10 research outputs found

    IL-33 signalling contributes to pollutant-induced allergic airway inflammation

    No full text
    Background: Clinical and experimental studies have identified a crucial role for IL-33 and its receptor ST2 in allergic asthma. Inhalation of traffic-related pollutants, such as diesel exhaust particles (DEP), facilitates the development of asthma and can cause exacerbations of asthma. However, it is unknown whether IL-33/ST2 signalling contributes to the enhancing effects of air pollutants on allergic airway responses. Objective: We aim to investigate the functional role of IL-33/ST2 signalling in DEP-enhanced allergic airway responses, using an established murine model. Methods: C57BL/6J mice were exposed to saline, DEP alone, house dust mite (HDM) alone or combined DEP+HDM. To inhibit IL-33 signalling, recombinant soluble ST2 (r-sST2) was given prophylactically (ie, during the whole experimental protocol) or therapeutically (ie, at the end of the experimental protocol). Airway hyperresponsiveness and the airway inflammatory responses were assessed in bronchoalveolar lavage fluid (BALF) and lung. Results: Combined exposure to DEP+HDM increased IL-33 and ST2 expression in lung, elevated inflammatory responses and bronchial hyperresponsiveness compared to saline, sole DEP or sole HDM exposure. Prophylactic interference with the IL-33/ST2 signalling pathway impaired the DEP-enhanced allergic airway inflammation in the BALF, whereas effects on lung inflammation and airway hyperresponsiveness were minimal. Treatment with r-sST2 at the end of the experimental protocol did not modulate the DEP-enhanced allergic airway responses. Conclusion: Our data suggest that the IL-33/ST2 pathway contributes to the onset of DEP-enhanced allergic airway inflammation

    Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma

    No full text
    Background: Adult patients with nasal polyps often have comorbid asthma, adding to the serious effect on the quality of life of these patients. Nasal polyps and asthma might represent a therapeutic challenge; inflammation in both diseases shares many features, such as airway eosinophilia, local IgE formation, and a T(H)2 cytokine profile. Omalizumab is a human anti-IgE mAb with proved efficacy in patients with severe allergic asthma. Omalizumab could be a treatment option for patients with nasal polyps and asthma. Objective: The goal of this study was to investigate the clinical efficacy of omalizumab in patients with nasal polyps and comorbid asthma. Methods: A randomized, double-blind, placebo-controlled study of allergic and nonallergic patients with nasal polyps and comorbid asthma (n = 24) was conducted. Subjects received 4 to 8 (subcutaneous) doses of omalizumab (n = 16) or placebo (n = 8). The primary end point was reduction in total nasal endoscopic polyp scores after 16 weeks. Secondary end points included a change in sinus computed tomographic scans, nasal and asthma symptoms, results of validated questionnaires (Short-Form Health Questionnaire, 31-item Rhinosinusitis Outcome Measuring Instrument, and Asthma Quality of Life Questionnaire), and serum/nasal secretion biomarker levels. Results: There was a significant decrease in total nasal endoscopic polyp scores after 16 weeks in the omalizumabtreated group (-2.67, P = .001), which was confirmed by means of computed tomographic scanning (Lund-Mackay score). Omalizumab had a beneficial effect on airway symptoms (nasal congestion, anterior rhinorrhea, loss of sense of smell, wheezing, and dyspnea) and on quality-of-life scores, irrespective of the presence of allergy. Conclusion: Omalizumab demonstrated clinical efficacy in the treatment of nasal polyps with comorbid asthma, supporting the importance and functionality of local IgE formation in the airways

    Quantification and role of innate lymphoid cell subsets in Chronic Obstructive Pulmonary Disease

    Get PDF
    Objectives: Innate lymphoid cells (ILCs) secrete cytokines, such as IFN-γ, IL-13 and IL-17, which are linked to chronic obstructive pulmonary disease (COPD). Here, we investigated the role of pulmonary ILCs in COPD pathogenesis. Methods: Lung ILC subsets in COPD and control subjects were quantified using flow cytometry and associated with clinical parameters. Tissue localisation of ILC and T-cell subsets was determined by immunohistochemistry. Mice were exposed to air or cigarette smoke (CS) for 1, 4 or 24 weeks to investigate whether pulmonary ILC numbers and activation are altered and whether they contribute to CS-induced innate inflammatory responses. Results: Quantification of lung ILC subsets demonstrated that ILC1 frequency in the total ILC population was elevated in COPD and was associated with smoking and severity of respiratory symptoms (COPD Assessment Test [CAT] score). All three ILC subsets localised near lymphoid aggregates in COPD. In the COPD mouse model, CS exposure in C57BL/6J mice increased ILC numbers at all time points, with relative increases in ILC1 in bronchoalveolar lavage (BAL) fluid. Importantly, CS exposure induced increases in neutrophils, monocytes and dendritic cells that remained elevated in Rag2/Il2rg-deficient mice that lack adaptive immune cells and ILCs. However, CS-induced CXCL1, IL-6, TNF-α and IFN-γ levels were reduced by ILC deficiency. Conclusion: The ILC1 subset is increased in COPD patients and correlates with smoking and severity of respiratory symptoms. ILCs also increase upon CS exposure in C57BL/6J mice. In the absence of adaptive immunity, ILCs contribute to CS-induced pro-inflammatory mediator release, but are redundant in CS-induced innate inflammation

    Gaia data release 1 open cluster astrometry : performance, limitations, and future prospects

    No full text
    corecore